

§16.4 Green's Theorem ①

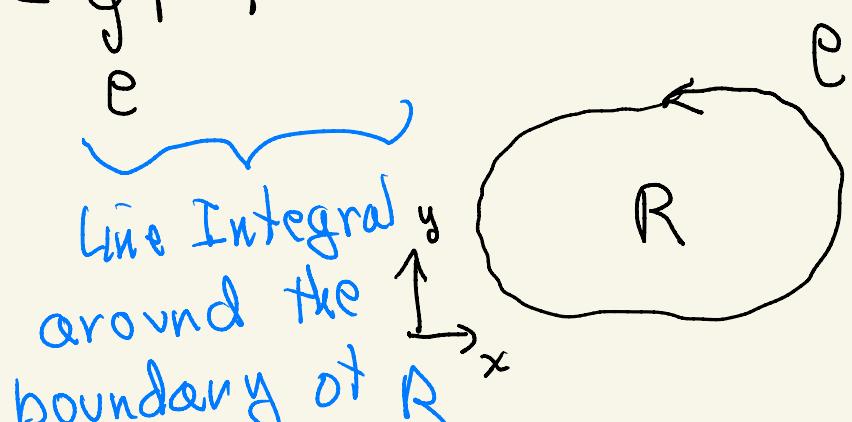
Green's Theorem is what the Divergence Thm and Stokes Theorem both reduce to when you restrict from the real world of $(x, y, z) \in \mathbb{R}^3$ to the plane $(x, y) \in \mathbb{R}^2$.

Statement of Green's Theorem.

Let $\vec{F} = \overrightarrow{(M(x, y), N(x, y))}$ be a vector field in the plane $(x, y) \in \mathbb{R}^2$, and let C denote a positively oriented closed curve C . Then

$$\iint_R N_x - M_y \, dA = \oint_C \vec{F} \cdot \vec{T} \, ds$$

Ch 15 double integral over R



Comments:

- Note that this says that the integral of derivatives of \vec{F} over a 2-dimensional region R reduces to an integral of undifferentiated components around the 1-dimensional boundary

A generalization of FTC

$$\int_a^b f'(x) dx = f(b) - f(a)$$

- Note that $N_x - M_y = \text{Curl } \vec{F} \cdot \hat{k}$ if we extend \vec{F} to \mathbb{R}^3 by making $P = 0$. $\vec{F} = (M(x, y), N(x, y), 0)$

$$\begin{aligned} \text{Curl } \vec{F} &= \begin{Bmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{Bmatrix} = \hat{i} (P_y - N_z) - \hat{j} (M_z - P_x) \\ &\quad + \hat{k} (N_x - M_y) \end{aligned}$$

$$= (N_x - M_y) \hat{k}$$

Thus: $N_x - M_y = \text{Curl } \vec{F} \cdot \hat{k}$ Put into Green's Thm

$$\iint_R N_x - M_y dA = \int_C \vec{F} \cdot \hat{T} ds \Rightarrow \iint_R \text{Curl } \vec{F} \cdot \hat{n} dS = \int_C \vec{F} \cdot \hat{T} ds$$

Green's Stokes

(3)

Conclude: Green's Thm is just Stokes Thm for vector fields & curves in xy -plane

- Green's Thm is usually written with the line integral written as 1-form $Mdx + Ndy$

Recall: $\oint_C \vec{F} \cdot \vec{T} ds = \oint_C \vec{F} \cdot \vec{v} dt \quad \vec{v} = \frac{d\vec{r}}{dt}$

$$= \oint_C \vec{F} \cdot d\vec{r} \quad d\vec{r} = \vec{v} dt$$

$$= \oint_C \overrightarrow{(M, N)} \cdot \overrightarrow{(dx, dy)} \quad d\vec{r} = \overrightarrow{(dx, dy)}$$

$$= \oint_C M dx + N dy$$

The standard way of writing Green's Thm is:

$$\iint_R N_x - M_y \, dA = \oint_C M dx + N dy$$

Green's
Theorem

• We can also convert Green's theorem into the form of the Divergence Theorem 4

Given $\vec{F} = \overrightarrow{(M, N)}$

\perp rotates 90° clockwise

Define $\vec{F}_\perp = \overrightarrow{(N, -M)}$

Thus:

$$\vec{F} \cdot \vec{T} = \overrightarrow{(M, N)} \cdot \overrightarrow{(T_x, T_y)} = MT_x + NT_y$$

$$\vec{F}_\perp \cdot \vec{T}_\perp = \overrightarrow{(N, -M)} \cdot \overrightarrow{(T_y, -T_x)} = NT_y + MT_x$$

$\vec{T}_\perp = \vec{n}$ = outer normal

Also: $N_x - M_y = \text{Div} \overrightarrow{(N, -M)} = \text{Div} \vec{F}_\perp$

So

$$\iint_R N_x - M_y dA = \oint_C M dx + N dy \Leftrightarrow \iint_R \text{Div} \vec{F}_\perp dA = \oint_C \vec{F}_\perp \cdot \vec{n} ds$$

Green's Thm For M, N

$$\vec{F} = \overrightarrow{(M, N)}$$

Divergence Thm for \vec{F}_\perp

$$\vec{F}_\perp = \overrightarrow{(N, -M)}$$

Conclude: Green's Thm written in terms of \vec{F} becomes the Divergence Thm when written in terms of \vec{F}_\perp

Conclude: There are three equivalent forms of Green's Theorem.

$$(1) \iint_R N_x - M_y \, dA = \oint_C M \, dx + N \, dy \quad (\text{Greens})$$

$$(2) \iint_R \text{Curl } \vec{F} \cdot \vec{n} \, dS = \oint_C \vec{F} \cdot \vec{T} \, ds \quad (\text{Stokes})$$

$$(3) \iint_R \text{Div } \vec{F}_\perp \, dA = \oint_C \vec{F}_\perp \cdot \vec{n} \, ds \quad (\text{Divergence})$$

$\vec{n} = \vec{T}_\perp$

Since \vec{F}_\perp can be any vector field, it must be true for \vec{F} as well.

$$(3) \iint_R \text{Div } \vec{F} \, dA = \oint_C \vec{F} \cdot \vec{n} \, ds$$

$\vec{n} = \text{outer normal}$

Example ① Find a vector field $\vec{F} = (\overrightarrow{M(x,y)}, \overrightarrow{N(x,y)})$ such that

$$\oint_C \vec{F} \cdot \vec{T} \, ds = \text{Area Enclosed by } C$$

Soln: By Green's Theorem:

$$\iint_R (N_x - M_y) \, dA = \oint_C \vec{F} \cdot \vec{T} \, ds$$

If $N_x = \frac{1}{2}$ and $-M_y = -\frac{1}{2}$, then $N_x - M_y = 1$

and $\iint_R (N_x - M_y) \, dA = \text{area of } R$

For this choose $N = \frac{1}{2}x$, $M = -\frac{1}{2}y$, $\vec{F} = \left(\overrightarrow{-\frac{1}{2}y}, \overrightarrow{\frac{1}{2}x} \right)$

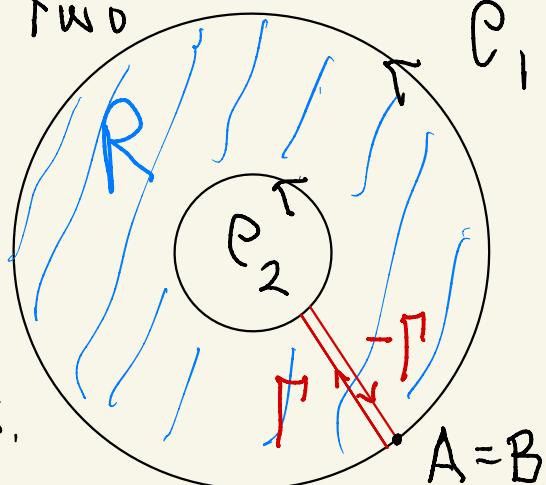
$$\iint_R (N_x - M_y) \, dA = \iint_R \frac{1}{2} + \frac{1}{2} \, dA = \iint_R dA = \text{Area of } R$$

$$\oint_C \vec{F} \cdot \vec{T} \, ds = \oint_C M \, dx + N \, dy = \oint_C \frac{1}{2}y \, dx - \frac{1}{2}x \, dy$$

Conclude:

$$\frac{1}{2} \oint_C y \, dx - x \, dy = \text{Area Enclosed by } C$$

Example ② Consider Green's Theorem when \mathbf{F} is defined in the annulus between two curves C_1 & C_2 . We have drawn two circles, but any two simple closed curves (SCC) one inside the other works.



Show: Green's Theorem applies in the form

$$\iint_R N_x - M_y \, dA = \oint_{C_1} \mathbf{F} \cdot \mathbf{T} \, ds - \oint_{C_2} \mathbf{F} \cdot \mathbf{T} \, ds.$$

Soln.: Draw in the two curves $+\Gamma$ & $-\Gamma$:

Then starting at A, $C = C_1 + \Gamma - C_2 - \Gamma_2$ is a SCC inside of which $\mathbf{F} = (\overrightarrow{M}, \overrightarrow{N})$ is defined.

Thus Green's Theorem applies to C :

$$\begin{aligned} \iint_R N_x - M_y \, dA &= \oint_C \mathbf{F} \cdot \mathbf{T} \, ds = \oint_{C_1 + \Gamma - C_2 - \Gamma_2} \mathbf{F} \cdot \mathbf{T} \, ds \\ &= \cancel{\oint_{C_1} \mathbf{F} \cdot \mathbf{T} \, ds} + \cancel{\oint_{\Gamma} \mathbf{F} \cdot \mathbf{T} \, ds} - \cancel{\oint_{C_2} \mathbf{F} \cdot \mathbf{T} \, ds} - \cancel{\oint_{\Gamma_2} \mathbf{F} \cdot \mathbf{T} \, ds} = \oint_{C_1} \mathbf{F} \cdot \mathbf{T} \, ds - \oint_{C_2} \mathbf{F} \cdot \mathbf{T} \, ds \end{aligned}$$

Example ③: Use Example ② to show

that if $\text{Curl } \vec{F} = 0$ in $D = \{(x, y) : (x, y) \neq 0\} = \mathbb{R}^2 \setminus \{(0, 0)\}$

then $\oint_{C_1} \vec{F} \cdot \vec{T} ds = \oint_{C_2} \vec{F} \cdot \vec{T} ds$ for any two

positively oriented curves C_1, C_2 which go around $(0, 0)$ exactly once.

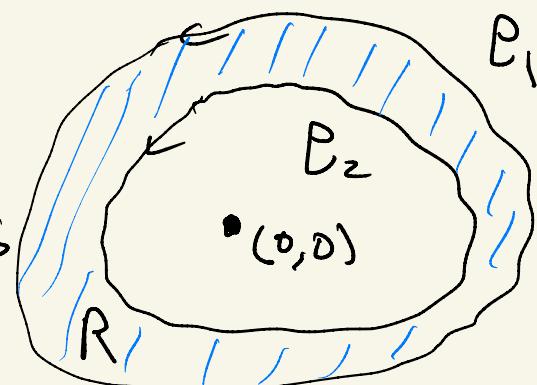
Solution: Since D is not simply connected, we cannot conclude from $\text{Curl } \vec{F} = 0$ that \vec{F} is conservative, $\vec{F} = \nabla f$, or that the line integral $\oint_C \vec{F} \cdot \vec{T} ds$ around closed curves $C = 0$.

Alternatively, apply Green's Theorem in the form

between C_1 & C_2 :

$$0 = \iint_R \text{Curl } \vec{F} \cdot \vec{n} dA = \oint_{C_1} \vec{F} \cdot \vec{T} ds - \oint_{C_2} \vec{F} \cdot \vec{T} ds$$

R
 $N_x - M_y$



$$\text{so } \oint_{C_1} \vec{F} \cdot \vec{T} ds = \oint_{C_2} \vec{F} \cdot \vec{T} ds$$